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Abstract

R ecognition of occlude d obje cts in synthetic aperture
radar (SAR) images is a signi�cant problem for au-
tomatic target recognition. In this paper, we present
a hidden Markov modeling (HMM) based approach for
recognizing objects in synthetic ap ertur eradar (SAR)
images. We identify the peculiar char acteristics of
SAR sensors and using these characteristics we develop
featur ebased multiple models for a given SAR image
of an object. The models exploiting the relative geome-
try of fe ature locations or the amplitude of SAR radar
return are based on sequentialization of scattering cen-
ters extracte d from SAR images. In order to improve
performance we inte grate these models syner gistically
using their probabilistic estimates for recognition of a
particular target at a speci�c azimuth. Experimental
results are presente d using both synthetic and real SAR
images.

Keywords: hidden Markov modeling, obje ct recogni-
tion, multiple recognitionmodels, rotation invariance,
synthetic aperture radar images

1. Introduction

One of the critical problems for object recognition
is that the recognition approach should be able to han-
dle partial occlusion of object and spurious or noisy
data [1]. In most of the object recognition approaches,
the spatial arrangement of structural information of
an object is the cen tral part that o�ers the most im-
portant information. Under partial occlusion situa-
tions the recognition process must be able to w ork
with only portions of the correct spatial information.
Rigid template matching and shape-based recognition
approaches depend on good prior segmentation results.
But the structural primitive (e.g., line segments, point-

like features, etc.) extracted from occluded and noisy
images may not have su�cient reliabilit y, which will di-
rectly undermine the performance of those recognition
approaches.

We want to suggest an object recognition mecha-
nism that e�ectively makes use of all available struc-
tural information. Based on the nature of the prob-
lems caused by occlusion and noise, w e view thespa-
tial arrangement of structural information as a whole
rather than view the spatial primitives individually.
Because of its stochastic nature, a hidden Markov
model (HMM) is quite suitable for characterizing pat-
terns. Its nondeterministic model structure makes it
capable of collecting useful information from distorted
or partially unreliable patterns. Many successful appli-
cations of HMM in speech recognition [2, 3] and char-
acter recognition [4, 5] attest to its usefulness. Thus,
it is potentially an e�ective tool to recognize objects
with partial occlusion and noise.

How ev er, the limit of traditional HMMs is that they
are basically one dimensional models. So how to ap-
propriately apply this approach to two dimensional im-
age problems becomes the key. It has been largely an
unsolved problem. In this paper w euse the features
based on the image formation process to encode the 2-
D image into 1-D sequences. We use information from
both the relative positions of the scattering centers and
their relative magnitude in SAR images to address the
fundamental issues of building object models and using
them for robust recognition of objects in SAR images.

1.1 Overview of the approach

During an o�-line phase, scattering centers are ex-
tracted from SAR images by �nding local maxima of
intensit y.Both locations and magnitudes of these peak
features are used in the approach. These features are
viewed as emitting patterns of some hidden stochas-
tic process. Multiple observation sequences based on
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both the relative geometry and amplitude of SAR re-
turn signal are used to build the bank of stochastic
models. These models provide robust recognition in
the presence of occlusion and unstable features caused
by scin tillation phenomena where some of the features
may appear/disappear at random in an image. At the
end of the o�-line phase, hidden Markov recognition
models for various objects and azimuths are obtained.
Similar to the o�-line phase, during the on-line phase
features are extracted from SAR images and observa-
tion sequences based on these features are matched
by the HMM forward process with the stored models
obtained previously. Maximum likelihood decision is
made on the classi�cation results. Now the results ob-
tained from multiple models are combined in a voting
kind of approach that uses both the object, azimuth la-
bel and its probability of classi�cation. This produces
a rank ordered list of classi�cations of the test image
and associated con�dences.

1.2 Related work and our contribution

Fielding and Ruck [6] have used HMM models for
spatio-temporal pattern recognition to classify moving
objects in image sequences. Rao and Mersereau [7]
have attempted to merge HMM and deformable tem-
plate approaches for image segmentation. T emplate
matching [8] and major axis based approaches [9] have
been used to recognize and indexobjects in SAR im-
ages, how ever, they are not suitable to recognize oc-
cluded objects. Kottle et al. propose a HMM-Based
SAR ATR system [10 ]. They �rst segment the SAR
image, and then extract features follow edby Radon
transforms. The feature sequences so obtained are in-
put to HMMs.

The contributions of this paper are:

� Hidden Markov modeling approach commonly
used for recognizing 1-D speech signals is applied
in a novel manner to 2-D SAR images to solv e
the occluded object recognition problem.

� Unlike most of the w orkfor model building in
pattern recognition and computer vision, our
recognition models using hidden Markov model-
ing concepts are based on the peculiar character-
istics of SAR images where the number of models
used for recognition is justi�ed by the quanti�ca-
tion of the azimuthal variance in SAR images.

� Multiple models derived from various observation
sequences, based on both the relativ egeometry
and signal amplitude (four based on geometry
and one based on amplitude), are used to capture

the unique characteristics of patterns to recognize
objects.

� Extensive amounts of data is used to test the
approach for recognition of objects for various
amounts of occlusion (10�50%) in both synthetic
and real data.

2 Hidden Marko vModeling Approach

It is w ellknown that HMM can model speech sig-
nals well [2, 3]. It is a model used to describe a doubly
stochastic process which has a set of states, a set of out-
put symbols and a set of transitions. Each transition is
from state to state and associated with it are a proba-
bilit y and an output symbol. The word `hidden' means
that although we observe an output symbol, we cannot
determine which transition has actually tak en place.
A t each time step t, the state of the HMM will change
according to a transition probability distribution which
depends on the previous state and an observation yt is
produced according to a probability distribution which
depends on the current state.

F ormally, a HMM is de�ned as a triple � = (A;B; �),
where aij is the probability that state i transits to state
j, bij(k) is the probability that w eobserve symbol k
in a transition from state i to state j, and �i is the
probability of i being the initial state. Figure 1 shows
an example of a N states HMM.

R ecognitionPr oblem � Forward Procedure: The
HMM provides us a useful mechanism to solve the
problems we face for robust object recognition. Given
a model and a sequence of observations, the probabil-
ity that the observed sequence w asproduced by the
model can be computed by the forward procedure [11].
Suppose we have a HMM � = fA;B; �g and an obser-
vation sequence yT1 . We de�ne �i(t) as the probability
that the Markov process is in state i, having generated
yt1.

�i(t) = 0; when t=0 and i is not an initial state.

�i(t) = 1; when t=0 and i is an initial state. (1)

�i(t) = �j [�j(t� 1)ajibji(yt)]; when t > 0:

The probability that the HMM stopped at the �nal
state and generated yT1 is �SF (T ). The forward proce-
dure is given below:

Let T be the length of an observation sequence and
N is the number of states in the HMM.

1. Initialize �i(0), where i = 1, 2, ..., N.

2. Compute �i(t) inductively (equation 1), where t
= 1, 2, ..., T. At each step, the previously com-
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Figure 1. A N states forward-type HMM

puted �i(t� 1) is used. Repeat this process until
t reaches T.

3. Output �SF (T ), where �SF (T ) is the probabil-
ity that the HMM stopped at the �nal state and
generated the observation sequence.

Usually, � becomes too small to be represented in
computer after several iterations. We tak e the loga-
rithm of the � value in the computation.

T raining Pr oblem � Baum-Welch A lgorithm: T o
build a HMM is actually an optimization of the model
parameters so that it can describe the observation bet-
ter. This is a problem of training. The Baum-Welch
re-estimation algorithm is used to calculate the maxi-
mum likelihood model. But before we use the Baum-
Welch algorithm, we must in troduce the counterpart of
�i(t) : �i(t), which is the probability that the Markov
process is in state i and will generate yTt+1.

�i(t) = 0; when t=T and i is not a �nal state.

�i(t) = 1; when t=T and i is a �nal state. (2)

�i(t) = �j [aijbij(yt+1)�j(t+ 1)]; when 0 � t < T:

The probability of being in state i at time t and state
j at time t+ 1 given observation sequence yT1 and the
model � is de�ned as follows:

ij(t) = P (Xt = i;Xi+1 = j j yT1 )

=
�i(t� 1)aijbij(yt)�j(t)

�SF (T )
(3)

Now the expected number of transitions from state i

to state j given yT1 at an y time is simply �T
t=1ij(t)

and the expected number of transitions from state i to
an y state at any time is �T

t=1�kik(t) . Then, giv en
some initial parameters, w ecould recompute aij , the
probability of taking the transition from state i to state

j as:

aij =
�T
t=1ij(t)

�T
t=1�kik(t)

(4)

Similarly, bij(k) can be re-estimated as the ratio be-
tw een the frequency that symbol k is emitted and the
frequency that any symbol is emitted:

bij(k) =
�t:yt=kij(t)

�T
t=1ij(t)

(5)

It can be proved that the above equations are guar-
anteed to increase �SF (T ) until a critical point is
reached, after which the re-estimate will remain the
same. In practice, w eset a threshold as the ending
condition for re-estimation.

So the whole process of training a HMM is as follows:

1. Initially ,w ehave only an observation sequence
yT1 and blindly set (A;B; �).

2. Use yT1 and (A;B; �) to compute � and � (equa-
tions 1, 2).

3. Use � and � to compute  (equation 3).

4. Use yT1 , (A;B; �), �, � and  to compute A and
B (equations 4, 5). Go to step 2.

A HMM is able to handle pattern distortions and
the uncertainty of the locally observed signals, because
of its nondeterministic nature. How ev er, a HMM is pri-
marily suited for sequential, one-dimensional patterns
and it is not obvious that how a HMM can be used
on 2-D patterns in object recognition. The basic ideas
to apply a HMM for our purpose are (a) training the
HMM � by samples of SAR images of a certain ob-
ject, and (b) recognizing an unknown object in a given
SAR image. These tw o problems are addressed in the
follo wing. The key questions are what we shall use as
observation data and ho ww eget the observation se-
quences.

3 Hidden Marko vModels for SAR Ob-

ject Recognition

Scattering centers (location and magnitude) ex-
tracted from SAR images are used to train and test
models for recognition. A tsix inc h resolution, there
exist a large number of peaks corresponding to scat-
tering cen ters. We ha ve selectedpeaks as features in
this work since we wanted to evaluate the limits of our
approach using six inc h resolution XPA TCHand one
foot resolution MSTAR data before more complicated
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features are used. We consider a pixel as a scattering
cen ter if the magnitude of SAR return at this pixel is
larger than all its eight neighbors.

Unlike the visible images, SAR images are extremely
sensitive to sligh tchanges in viewpoint (azimuth and
depression angle) and are not a�ected by scale [12]. We
evaluate [13] the c haracteristics of scattering centers to
�nd out what kind of location invariance exists among
scattering centers. We �nd that scattering centers for
SAR images vary greatly with relatively small changes
of azimuth angles. As a result, to recognize occluded
objects w erepresent an object at a given depression
angle by 360 azimuths tak en in steps of 1� whenever
possible. The squint angle, the angle betw een the ight
path and radar beam, is kno wn(90� here) and kept
�xed for all the image data used in this paper.

3.1 Extraction of Observation Sequences

After the scattering centers are extracted, we need
to encode the data into a 1-D sequence as the input to a
recognition model based HMM process. It is one of the
key factors which a�ects the performance of a HMM
modeling approach for object recognition. There are
many w aysto choose observation sequences, but w e
want to use information from both the magnitude and
the relative spatial location of the scattering centers ex-
tracted from a SAR image. Also the sequentialization
method should not be a�ected by distortion, noise, or
partial occlusion and should be able to represent the
image e�ciently. Based on the above considerations,
w e employ tw o approaches to obtain the sequences.

� Sequences based on amplitudes: O1 =
fMagnitude1;Magnitude2; :::;Magnitudeng,
where Magnitudei is the amplitude of ith scat-
tering center.

� Sequences based on relative geometrical relation-
ships:
O2 = fd(1; 2); d(2; 3); :::; d(n; 1)g (length n)
O3 = fd(1; 2); d(1; 3); :::; d(1; n)g (length n� 1)
O4 = fd(2; 1); d(2; 3); :::; d(2; n)g (length n� 1)
O5 = fd(3; 1); d(3; 2); :::; d(3; n)g (length n� 1),
where d(i; j) is the Euclidean distance betw een
scattering centers i and j.

Sequence O1 is obtained by sorting the scattering
cen ters by their magnitude. We label the scattering
cen ters 1 through n in descending order. So in this
approach, we do not use the location information and
thus can avoid the instability caused by the error in lo-
calization of scattering centers. Sequences O2 through
O5 are obtained based on the relative locations of the

scattering centers and magnitude of the scattering cen-
ters is not used. In experiments described in section
4, w econsider a certain number of scattering centers
(sorted in descending order of their magnitude). This
is because w eexpect that the scattering centers with
larger magnitude are relativ elymore stable than the
weaker ones.

Since w euse discrete HMMs, eac h element in the
sequence should be converted to an observationsym-
bol. It is like a label from 1 to K that represents the
symbols which can be observed for a HMM. We use
the K-means algorithm [14] to classify the magnitude
values (or distance values) of all the scattering centers
in the database into K classes (K is experimentally de-
termined). Once w eknow to which class eac h of the
elements of a sequence belongs, w elabel the element
with the label of its class. Thus, for a given sequence,
w e obtain a sequence of observation symbols.

3.2 Training and Testing Phases

The procedure for building the model base is de-
scribed as follows:

1. Loop (for a given depression angle) lines 2-4 for
eac h object and each azimuth angle.

2. Generate images which simulate occlusion with
scattering centers occluded from di�erent direc-
tions (see Section 4).

3. Loop line 4 for each image generated by line 2.

4. Use Baum-Welch algorithm to re-estimate the
HMM parameters. (Exit 3 � 4 loopwhen there
is no further change in parameter values.)

The recognition procedure is described as follows:

1. Loop lines 2-3 for all the testing observation se-
quences.

2. Loop line 3 for all the models in the model base.

3. F eed the observation sequence in to the model,
(A;B;�)(M�

i
;a�

j
), Use Forward algorithm to com-

pute the probability that this sequence is pro-
duced by this model.

4. The model with maximum probability of an ob-
servation sequence is selected as the best match.

4 Experiments on XPATCH data

4.1 XPATCH SAR Data

We use XPA TCHSAR simulator [15 ] to generate
the data to perform controlled experiments. In our
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research, we selected six inch resolution data because it
is possible to collect real data at this resolution and also
super resolution techniques [16 ] exist to achiev esuc h
data. Also we wanted to see how well w e can solve the
occluded target recognition problem at this resolution.
We generate one set of SAR images of 5 objects (Fred
tank, SCUD missile launcher, T72 tank, T80 tank and
M1a1 tank) at 15� depression angle, and 90� squint
angle (�xed), at each of the azimuth angles from 0�

to 359�. We extract the 20 scattering centers (local
maxima) with largest magnitudes. In the experiments,
since we want to test the performance of our approach
under partial occlusion and spurious data, we simulate
realistic occlusion situations and generate images for
training and testing.

Simulating occlusion: There does not exist an ac-
ceptable model for occlusion for automatic object
recognition. We consider the occlusion to occur pos-
sibly from 9 di�erent directions as shown in Figure
2. Scattering centers being occluded are not available.
Moreover, we add some spurious data into the image.
For instance, 20 scattering centers are shown in eac h
image of Figure 2. They are obtained by removing 4
scattering cen ters (20% occlusion) from the cen ter of
one object or from one particular direction (simulated
occlusion) and adding 4 spurious scattering centers into
the image. The spurious scattering centers are added
based on the following rules:

� The location of the scattering center is generated
as a pair of random numbers.

� The magnitude of the scattering center depends
on a random number r betw een1 and 50. We
use the magnitude of the rth brightest scattering
cen ter as the magnitude of the spurious scattering
cen ter.

T rainingData: Based on the method of simulating
occlusion described above, w e generate 90 images from
the original image (10 samples for each of 9 directions)
at 5% occlusion and another 90 images at 10% occlu-
sion. Including the original image, we have 181 images
per object per azimuth angle to train multiple HMM
models. Thus, we have a total of 99; 000 (5 objects, 360
azimuths, 55 occluded images) samples for training.

T estingData: We generate one image with o scat-
tering centers occluded (o = 2; 4; 6; 8 or 10) from direc-
tion d (d = 0; 1; :::; 8) per azimuth angle per object. So
there are 1800 images (5 objects � 360 degrees) gener-
ated for testing of occlusionwith o scattering centers
occluded from direction d. Thus, w eha vea total of
81; 000 (5 objects, 360 azimuths, 5 di�erent occlusions
10%� 50%, and 9 directions) samples for testing.

Figure 2. Scattering centers of T72 tank at az-
imuth 0�, part of scattering centers are oc-
cluded from a particular direction (0-8, left to
right, top to bottom).

4.1.1 T raining� Building Bank of HMMMod-

els for Recognition

We performed experiments to choose the optimum of
number of states and number of symbols of the HMM.
We use data from �ve azimuth angles of �v eobjects
(Fred tank, SCUD missile launcher, T80 tank, T72
tank, and M1a1 tank). We �nd that with the increase
in the number of states and symbols, recognition per-
formance increases. Considering both the recognition
performance and the computation cost, w echoose 8
states and 32 symbols as the optimal number of states
and symbols for our HMM models. Figure 3 illustrates
example parameters of a 5 state, 4 symbol HMM.

Using the algorithm in Section 3, w ebuilt recog-
nition models. For a selected sequence type w ehave
1800 (= 360 azimuths � 5 object classes) HMM mod-
els. Since w eha vede�ned �ve kinds of observation
sequences for eac h image (O1; O2; O3; O4; O5), w eget
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Observation 
 probability

1 2 3 4 5
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 Transition
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symbols

Figure 3. An example: parameters of a 5
states, 4 symbols HMM. The number on edges
represents the transition probability, and the
vector associated with each transition repre-
sents bij(k). In our case, we use HMM with 8
states, 32 symbols

models based on each kind of observation sequence.

4.1.2 T esting Results

During testing phase, for a giv en observation se-
quence type each of the 81,000 testing images is tested
against all models (1800 models: 5 objects, eac h has
360 models for each azimuth angle). If the model with
the maximum probability is the model which produced
the sequence, w ecount it as one correct recognition
(object t ypeand its pose). Otherwise, we count it as
one incorrect recognition. After we get the results on
images with scattering centers occluded from all 9 di-
rections, w e average these results and associate this
recognition performance with the selected model for a
given percent of occlusions.

Figure 4 shows the testing results for each of the �ve
kinds of sequences: O1; O2; :::; O5 (section 3.1). The
top curve, a dotted line, is the percentage that the test
case object and pose is among the top ten recognition
results, and the low er curv e, in solid line, indicates the
percentage that the recognition result with the highest
probability is the same as the test case object and pose.

4.1.3 Integration of results from multiple se-

quences

Since not all models based on various sequences for
a particular object and azimuth will provide optimal
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Figure 4. Recognition rate vs. percentage of
occlusion for HMM models based on (a) O1,
(b) O2, (c) O3, (d) O4, and (e) O5.

recognition performance under occlusion, noise, etc.,
we improve the recognition performance by combining
the results obtained from all �ve kinds of models. Be-
fore discussing the approach for integration, we ask the
question that if one testing image cannot be recognized
correctly by model based on a particular sequence, say
O2, can it be recognized correctly by models based on
other kinds of sequences? The answer to this question
is yes as the following results demonstrate.

The results of using models based on O1 to O5 are
shown in Table 1. This tablesho ws how many incor-
rect recognitions, made by using models based on se-
quence O2, can be correctly recognized (\captured")
by models based on other sequences. We de�ne the
\upper bound" as the highest possible recognition per-
formance that can be achiev edusing the 5 kinds of
models considering only the top candidate for recog-
nition from each of the models. The total number of
errors corresponding to \upper bound" are shown in
the 7th column of the table.

We draw two curves (Figure 5(a)) to show the pos-
sible \upper bound" and \low er bound" of recognition
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Table 1. Testing results for occluded object recognition using of 81,000 testing cases. Results based
on integration of O1 to O5.

Per cent. Errors Errors Captured Errors % Correct % Based on % Based on
occlusion with by models using models R ecognition Inte gration Integration

model O2 O1 O3 O4 O5 O1 to O5 (\upper bound") R ecognition Indexing

10% 4 0 1 0 1 2 100.0 99.9 99.9
20% 271 19 53 74 101 121 99.6 98.9 99.6
30% 763 111 294 339 418 144 98.6 93.4 97.6
40% 1050 265 580 629 675 79 95.6 79.4 91.8
50% 1119 397 726 755 784 37 91.8 62.2 83.3

Average Recognition Rate 97.1 86.8 94.4
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Figure 5. (a) “Upper” and “lower” bound of
recognition rate vs. percentage of occlu-
sion. (b)Performance of integrated models:
using integrated models O1 to O5. The re-
sults for recognition (Top 1) and indexing (Top
5) candidates are superimposed on the figure
shown in (a).

rate w ecan achieve based on the 5 kinds of models.
The curve on the top is obtained by considering all 5
kinds of models, if one of them can correctly recog-
nize the test data, we count it as a correct recognition.
The \lower bound" or the bottom curv eis the w orst
recognition result out of the �ve models.

We have dev eloped a histogram-like method (shown
in Figure 6) to integrate the results from models based
on 5 di�erent sequences. The algorithmic steps are:

1. For eac h test image, w ecollect the ten highest
possibilities in the testing results corresponding
to each of the sequences O1; O2; :::; O5.

2. A normalization is done to the ten probabilistic
estimates corresponding to each of the sequences.
So we have 50 normalized numbers for each test
image.

Model 
based
on O2

Model 
based
on O5

Model 
based
on O3

Model 
based
on O4

Model 
based
on O1

Normalizer Normalizer NormalizerNormalizerNormalizer

test image

Histogram-based voting for a (target, azimuth)

Final recognition  results based 
on decreasing confidence 

Figure 6. Integration of results by histogram-
based method.

3. We draw a histogram with probability vs. object
and pose (here w ecombine object and pose as
one parameter). This is because eac h number
corresponds to an object and a pose. The number
is the probability that the test image is the image
of that object at that pose.

4. If the object associated with the highest prob-
abilit y in the histogram is the same as the
groundtruth, w ecount it as one correct recog-
nition.

The second curve from the bottom in Figure 5(b)
is the result for recognition. The corresponding confu-
sion matrix for various amounts of occlusion is shown
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Table 2. Confusion Matrix for 5 objects
classes at varying amounts of occlusion
(10%� 50%).

% Occlusion F redSCUD T72 T80 M1a1

10 100.0 0.0 0.0 0.0 0.0
20 99.2 0.0 0.1 0.4 0.3

F red 30 95.9 0.2 0.6 1.9 1.4
40 87.1 0.7 2.8 5.5 3.9
50 73.2 1.6 7.1 12.1 6.0
10 0.0 100.0 0.0 0.0 0.0
20 0.0 99.7 0.2 0.1 0.0

SCUD 30 0.9 97.3 1.2 0.4 0.3
40 3.1 88.8 4.9 1.9 1.3
50 5.6 77.9 11.9 2.7 1.9
10 0.0 0.0 100.0 0.0 0.0
20 0.4 0.2 99.2 0.1 0.2

T72 30 2.4 0.5 95.3 1.1 0.6
40 9.1 2.1 82.5 3.8 2.4
50 16.8 5.2 65.9 6.8 5.4
10 0.0 0.0 0.0 100.0 0.0
20 1.2 0.0 0.1 98.6 0.1

T80 30 6.9 0.0 0.6 91.1 1.4
40 21.5 0.1 1.6 72.6 4.2
50 37.4 0.8 3.1 50.9 7.8
10 0.0 0.0 0.0 0.0 100.0
20 1.6 0.0 0.1 0.3 98.0

M1a1 30 8.5 0.2 0.7 2.9 87.8
40 22.5 0.8 2.0 8.5 66.1
50 36.9 1.1 5.2 13.8 42.9

in T able2. On the average, w e�nd 80:35% correct
recognition performance when the objects are occluded
from 10� 50%. The second curve from the top in Fig-
ure 5(b) is obtained by counting a correct indexing
result when the groundtruth is in the objects associ-
ated with the highest 5 probabilities in the histogram.
F or the purpose of comparison, we have also superim-
posed the curves of Figure 5(a) into Figure 5(b)with
\low er/upper" bounds.Considering the correct index-
ing answer in the top 5 responses, the average perfor-
mance is 93:3% for 5 objects occluded from 10%�50%.
Thus, our method of integration produces good results
in comparison to \upper bound" which is 95:3% for 5
objects for 10%� 50% occlusion.

4.2 Real SAR Data
The methods used here are the same as those used

in the previous subsection. The only di�erence is that
here we experiment on real data instead of XPA TCH
data. We use MSTAR public real SAR images (at one
foot resolution and depression angle 15�) of 2 objects
(T72 tank with serial n umber #a64, shown in Figure

7, and ZSU tank with serial number #d08). Ideally, we
can have 360 object models for each azimuth for each
object. How ever, w edon't ha ve360 SAR images for
each object in the MSTAR data set. For the T72 tank,
there are 288 images available for di�erent azimuths.
Also for the ZSU tank, 288 images are available. Thus,
each object consists of 288 azimuths which we call ob-
ject models. Each object model consists of HMM mod-
els based on observation sequences (O1 to O5). We
extract 30 scattering centers with largest magnitudes
from each SAR image.

We consider the occlusion to occur possibly from
9 di�erent directions (center, 4 sides and 4 corners of
the image). Scattering centers being occluded are not
available. Moreover, w eadd bac k into the image at
random locations a number of spurious scattering cen-
ters, equal to the number of occluded scatterers, of
random magnitude. The random magnitude could be
equal to the magnitude of any of the top 30 scatterers.
F or example, for30% occlusion, we remove 9 scatter-
ing centers from the center of one object or from one
particular direction and add randomly 9 spurious scat-
tering cen ters bac kin to the image. We compute the
observation sequences based on the scattering centers
available after the occlusion process has taken place.

(a) SAR image of a
T72 tank

(b) F eatures extracted
for T72 tank

Figure 7. Real SAR images and region of inter-
ests (ROIs) (with peaks shown as black dots
superimposed on the ROI) for T72 tank #a64.

4.2.1 T raining andT esting Data

T raining Data:We generate 91 training sequences of
each type (O1 to O5) from each SAR image. The �rst
one is obtained from the original SAR image without
occlusion. Then w eocclude the SAR image from 9
directions. F or eac h direction, the occlusion lev el is
5% and 10%. For each occlusion lev el, w eextract 5
training observation sequences. So 91 sequences are
generated from each image. We have two objects and
288 SAR images of each object, thus the number of
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Table 3. Confusion matrix for various occlusions using MSTAR data

Occlusion Level
T arget Type 20% 30%

T72 ZSU T72 ZSU
T72 280(97.2%) 8(2.8%) 233(80.9%) 55(19.1%)
ZSU 5(1.7%) 283(98.3%) 64(22.2%) 224(77.8%)

Occlusion Level
T arget Type 40% 50%

T72 ZSU T72 ZSU
T72 200(69.4%) 88(30.6%) 164(56.9%) 124(43.1%)
ZSU 98(34.0%) 190(66.0%) 117(40.6%) 171(59.4%)

Table 4. Recognition results for various occlusions using MSTAR data

Occlusion Level
T arget Type 20% 30%

correct error rejection correct error rejection
T72 279(96.9%) 7(2.4%) 2(0.7%) 230(79.9%) 47(16.3%) 11(3.8%)
ZSU 281(97.6%) 4(1.4%) 3(1.0%) 216(75.0%) 59(20.5%) 13(4.5%)

Occlusion Level
T arget Type 40% 50%

correct error rejection correct error rejection
T72 188(65.3%) 75(26.0%) 25(8.7%) 156(54.2%) 110(38.2%) 22(7.6%)
ZSU 168(58.3%) 91(31.6%) 29(10.1%) 164(56.9%) 102(35.5%) 22(7.6%)

training sequences of each type (O1 to O5) is 52,416.
Since there are 5 kinds of observation sequences, the
total number of sequences is 262,080.

T estingData: F romeac h SAR image, w egenerate
36 testing sequences of each type (O1 to O5). We oc-
clude the SAR image from 9 directions. For each direc-
tion, the occlusion level is from 20% to 50% with 10%
increment. That is, the numbers of occluded scatter-
ing centers are 6, 9, 12, and 15 respectively. Thus, we
have total 20736 testing sequences of each type. When
testing, we only use the sequences which are obtained
when the occlusion was from direction 7, which is the
direction from the right side of the image. So, for each
occlusion level, w ehave 576 testing sequences. Since
there are 5 kinds of observation sequences, the total
number of sequences for each occlusion level is 2880.

4.2.2 Experiment Results

T ables 3 and 4 sho w the experimental results on
MSTAR real data. These results are obtained by in-
tegrating the results from 5 di�erent type of sequences
O1, O2, O3, O4, and O5.

Table 3 shows the results from recognizing 20% to
50% occluded T72 and ZSU tank. The confusion ma-
trix shows ho wmany of them are correctly identi�ed
and how many are incorrectly recognized. In thisex-
periment, w eare concerned only with the identity of
the object. The test object is the type of the model
with maximum probability.

Table 4 sho ws the results similar to Table 3. The
di�erence is that here we use \probability ratio thresh-
old" instead of considering only the maximum proba-
bilit y.Only when the ratio betw een the maximum and
second maximum (other object type) probabilities is
greater than the probability ratio threshold (1.01 used
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here) we accept the recognition result. Otherwise, it is
rejected and the test data is labeled as unknown ob-
ject. The above results sho wthat recognition results
are somewhat satisfactory, especially when the occlu-
sion is below 40%.

5 Conclusions

Recognition of occluded object has been a signi�cant
problem for automatic target recognition. In this pa-
per, we have presented a conceptual approach for the
recognition of occluded objects in SAR images. The
approach uses multiple HMM based models for var-
ious observation sequences that are chosen based on
the SAR image formation and account for both the
geometry and magnitude of SAR image features. We
have shown the results on both XPATCH and real SAR
data. The number of observation sequences and the
number of features are design parameters which can
be optimized by follo wing the approach presented in
the paper.
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